\qquad
\qquad
\qquad

1-7 Function Notation

Find each value of the function.

1. $f(x)=-5 x+9$
$f(3)=-5($ \qquad) $+9=-$ \qquad $+9=$ \qquad
2.

$$
f(0)=
$$

$f(1)=$ \qquad
3.

$f(-1)=$ \qquad

$$
f(-2)=
$$

\qquad

$$
f(2)=
$$

\qquad
$f(-3)=$ \qquad
4.

$f(-4)=$ \qquad
$f(0)=$ \qquad
$f(2)=$ \qquad

Graph each function.

5.

7. Ty uses the function $g(x)=0.5+0.2(x-1)$ to calculate the cost in dollars of using a calling card to make a long-distance call lasting x minutes. The variable x must be a whole number. Graph the function. Then determine the cost of a 10-minute call.
\qquad
\qquad
6. $f(x)=2 x-3$

Calling Card Costs

This is a function.
6. Yes, each value of x is associated with only 1 value of y.
7. No, each car model is manufactured as many individual cars.
8. Yes, there is only 1 score associated with each test date.

Practice C

1. Domain: $\{-2,1,3,6\}$; Range: $\{-3,4\}$

2. Domain: $\{0,2,3\}$; Range: $\{-2,-1,1,2\}$

3. Domain: $\{1,2,3,4\}$;

Range: $\{37,38,44,59\}$

4. Domain: $\{-2,-1,0,1,2\}$;

Range: $\{-3,-2,-1,0,2,3\}$

5. not a function; function
6. function; not a function
7. function; not a function
8. not a function; not a function
9. function; not a function
10. not a function; function

Reteach

1. 2002, 2003, 2004, 2005\}; 28, 35, 42, 46\}
2. $-3,-2,-1,0\} ;-1,0,1,2\}$
3. Function
4. Not a function; possible answer: $(1,0)$, $(1,-2)$

Challenge

1. $V, W, X, Z ; Y:(3,3)$ does not exist because 3 is not greater than 3.
2. $W, Z ; V: 10$ is a factor of 20 , but 20 is not a factor of $10 ; X: 8$ is a multiple of 4 but 4 is not a multiple of $8 ; Y: 3>2$ but 2 is not greater than 3.
3. $V, W, X, Y, Z \quad$ 4. W, Z

Problem Solving

1. Yes; each calorie value has only one fat value.
2. Yes; each calorie value has only one carbohydrate value.
3. No; the carbohydrate value 12.2 has two calorie values, 102 and 83.
4. D
5. G
6. B
7. H

Reading Strategies

1. $-2,0,1,2$; domain is the set of x values.
2. 4, 2, $0,-4,-6$; range is the set of y values.
3. Not a function because the x value -2 is repeated
4. The relation is a function because no input values are repeated.

LESSON 1-7

Practice A

1. $3 ; 15 ;-6$
2. $1 ; 0 ; 1$

3. $-2 ;-3 ;-4$

4. $1 ; 3 ; 4$

5.

6.

7. $\$ 2.30$

Calling Card Costs

Practice B

1. $6,2,-4$
.2. $-2,-3,-\frac{3}{4}$
2. $2,0,8 \frac{1}{4}$
3. $-\frac{3}{4}-1,-\frac{1}{4}$
4. $0,-4$

5. 4,1

6. $f(c)=\frac{0.77 c}{1.24} ; f(5)=3.10$; the value of $\$ 5$

Canadian is equivalent to 3.10 euros.
8. $f(p)=0.85 p-200 ; f(2500)=1925$; $\$ 1925$ is the final, discounted price of a computer with an original price of $\$ 2500$.

Practice C

1. $8,5 \frac{7}{8}, 5.6,5 \frac{1}{4}$
2. $-54,-\frac{11}{9},-9,54$
3. $-2 \frac{3}{4},-2,-\frac{1}{2}-2 \frac{3}{4}$
4. $-1, \frac{1}{4}, 1 \frac{1}{4}, 2$
5. Possible answer: The domain is a positive whole number, x, representing the number of people at a party; the range is a positive whole number, $\frac{3 x}{8}$, representing the number of pizzas needed.
6. Possible answer: The domain is a positive rational number, m, representing
